If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+4X-640=0
a = 1; b = 4; c = -640;
Δ = b2-4ac
Δ = 42-4·1·(-640)
Δ = 2576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2576}=\sqrt{16*161}=\sqrt{16}*\sqrt{161}=4\sqrt{161}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{161}}{2*1}=\frac{-4-4\sqrt{161}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{161}}{2*1}=\frac{-4+4\sqrt{161}}{2} $
| -1.3=65z | | 3b-13=5 | | 2.1^a+2=8.25 | | 9x+4=2x | | X+(0.15x)=1100 | | x-125=2 | | 20x-5=170 | | 19x-59=6x/8 | | 32z-25=152+47-16z=16 | | 4(x-3)=3x-1;x=9 | | (20a-85)/(a-4)=0 | | 50=15+.1n | | 1x+1/3x=16 | | x+5=7(2x+3)-3 | | 8x+18-7x=-3-12 | | 2/5k-(k+1/5)=1/25(k+5) | | 20=v/4-10 | | 4w+84=524 | | 2/3(3/2x-1)-2/5(-5x+2)=14/8 | | 4w+32=256 | | 4w+42=244 | | 34b+36-12=432-17b | | 23/50=x/180 | | x-3+x-1=244 | | x+5=7(2x+3)−3 | | 50=25.x/1 | | -5x+9+6x=-3+6 | | -2t=34 | | 13x-23=22-2x | | 50=25.x | | 45z-253=27+12z+72+11 | | t-1/4=1/3 |